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The paper presents a theoretical study of the damping process of non-linear vibrations in
a one-mass model of a mechanical system over a friction joint. The problem is considered
assuming a uniform unit pressure distribution between the contacting surfaces of the conical
sleeve-shaft neck of the friction joint. The steady-state motion of the system is subject to har-
monic excitation. The analysis includes the following: the influence of geometric parameters
of the system, its external load amplitude, unit pressures and the friction coefficient upon
the amplitude-frequency characteristics and the phase-frequency characteristics. Structural
friction has been also taken into account. The equation of motion of the examined mechani-
cal system has been solved by means of the slowly varying parameters (Van der Pol) method
and a numerical simulation method.
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1. Introduction

Forced vibration problems of mechanical systems with structural friction are widely discussed
in a number of domestic and foreign scientific papers, see Andrzejuk (2012), Gałkowski (1999),
Giergiel (1990), Grudziński and Kostek (2005), Kosior (2005), Mostowicz-Szulewski and Nizioł
(1992), Osiński (1998), Skup (2010), Zboiński and Ostachowicz (2001) or Badraghan (1994),
Meng (1989), Sanitruk et al. (1997), Sextro (2002), Wang and Chen (1993), Zahavi (1993).

Analytical considerations presented in this paper concern a real model of a friction joint
(Fig. 1). It consists of two cooperating conical friction pairs (Fig. 2). Such types of joints have
found an extensive application in different types of mechanical systems and devices. They are
often designed and manufactured as natural energy dissipation elements.

Fig. 1. Components of the investigated sleeve-shaft neck friction joint: 1 – lower pressure plate grip of
the model, 2 – upper grip of the model, 3 – shaft neck, 4 – sleeve

Mathematical description of structural friction phenomena is not easy due to the complexity
of the friction process and difficulties in describing the state of stresses and deformations occur-
ring in cooperating elements. Therefore, the description is based on simplified assumptions and
fundamental mechanical laws that apply to the patterns of stress and deformations resulting
from tension, compression, torsion, shearing. A typical approach to such problems can be found
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Fig. 2. Physical model: (a) sleeve-shaft neck joint; (b) element of thickness ∆x at a distance x from the
larger end of the shaft; (c) element of thickness ∆x at a distance x from the larger end of the sleeve;

(d) displacement

in Gałkowski (1999), Kosior (2005), Osiński (1998), Skup (2010). The following assumptions
were made in order to analyze the investigated model: the distribution of unit pressure between
cooperating surfaces of the joint contact elements is uniform; there is a constant friction coef-
ficient of the contacting elements for an arbitrary value of the unit pressure; friction force on
contact surfaces of the cooperating elements is subject to Coulomb’s law; and, consequently,
the frictional resistance is proportional to the pressure, while the material properties are descri-
bed by Hook’s law. The friction is fully developed in the sliding zone, the internal forces are
neutral (due to very low acceleration values) and, finally, the cross-sectional area of the coopera-
ting elements remains flat. Besides theoretical investigations of the model shown in Fig. 2, also
experimental tests on the real testing object (Fig. 1) have been carried out.

2. A mathematical model of the friction joint – analysis of forced vibration

In this Section, the solution of the problem concerning forced vibrations of the conical friction
joint is presented. Nonlinear vibrations of the examined elements under forced harmonic loading
(2.1) are examined. An additional assumption has been made that the considered friction joint
can be described as a single-mass system with a triangular hysteresis loop

P = P0 cosωt (2.1)

The mathematical analysis is carried out considering the Van der Pol method.
The equation of motion of the system can be written as follows

mü+ P (u, sgn u̇) = P0 cosωt (2.2)

where m is the reduced mass, u – axial displacement; P (u, sgn u̇) – force represented by the
structural hysteretic loop (Fig. 3) dependent on the relative displacement, amplitude and sign
of velocity, P0 – excitation amplitude of the loading force, t – time; ω – angular velocity of the
excitation force.
Assuming the approximation of (2.2) in the form

u = A cos(ωt+ φ) (2.3)

where φ denotes the initial forcing phase A, φ – slowly varying time functions.
Differentiating equation (2.3), we obtain

u̇ = Ȧ cos(ωt+ φ)−Aω sin(ωt+ φ)−Aφ̇ sin(ωt+ φ) (2.4)
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Fig. 3. Hysteresis loop for the investigated friction joint

By analogy to the Lagrange method of parameters variation, (2.4) may be written in the form

Ȧ cos(ωt + φ)−Aφ̇ sin(ωt + φ) = 0 (2.5)

Therefore

u̇ = −Aω sin(ωt+ φ) (2.6)

Thus differentiating (2.6) once again, gives

ü = −Ȧω sin(ωt+ φ)−Aω2 cos(ωt+ φ)−Aωφ̇ cos(ωt+ φ) (2.7)

After introducing the denotation

z = ωt+ φ (2.8)

and taking advantage of (2.7), differential equation (2.2) takes the form

−Ȧω sin z −Aω2 cos z −Aωφ̇ cos z +
P (u, sgn u̇)

m
=
P0
m
cos(z − φ) (2.9)

Multiplying equation (2.5) by −ω cos z and equation (2.9) by sin z, we obtain

Ȧω cos2 z −Aωφ̇ sin z cos z = 0

Ȧω sin2 z +Aω2 sin z cos z +Aωφ̇ sin z cos z −
P (u, sgn u̇)

m
sin z = −

P0
m
sin z cos(z − φ)

(2.10)

Subtracting the system of equations (2.10), gives

Ȧω +Aω2 sin z cos z −
P (u, sgn u̇)

m
sin z = −

P0
m
sin z cos(z − φ) (2.11)

Since A and φ0 are slowly varying parameters in equation (2.2), equation (2.11) takes, after
integrating over the interval z ∈ (0, 2π), the following form

Ȧω

2π
∫

0

dz+Aω2
2π
∫

0

sin z cos z dz−
1

m

2π
∫

0

P (u, sgn u̇) sin z dz = −
P0
m

2π
∫

0

sin z cos(z−φ) dz (2.12)

Integrating both sides of equation (2.12), we get

2πȦω −
1

m

2π
∫

0

P (u, sgn u̇) sin z dz = −
P0π

m
sinφ (2.13)
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Multiplying equation (2.5) by ω sin z and equation (2.9) by cos z, one arrives at the following
system of equations

Ȧω sin z cos z −Aωφ̇ sin2 z = 0

− Ȧω sin z cos z −Aω2 cos2 z −Aωφ̇ cos2 z +
P (u, sgn u̇)

m
cos z =

P0
m
cos z cos(z − φ)

(2.14)

Adding both sides of equations (2.14) and averaging over one cycle of z ∈ (0, 2π), gives

−2πAωφ̇− πAω2 +
1

m

2π
∫

0

P (u, sgn u̇) cos z dz =
P0π

m
cosφ (2.15)

Steady-state equations (2.13) and (2.15) can be obtained when Ȧ = φ̇ = 0, therefore these
equations are reduced to the form

sinφ =
1

P0π

2π
∫

0

P (u, sgn u̇) sin z dz

mω2 +
P0
A
cosφ =

1

πA

2π
∫

0

P (u, sgn u̇) cos z dz

(2.16)

Integrating equations (2.16) produces a discontinuity of P (u, sgn u̇) for φ̇ = 0. To avoid this
problem, we confine our considerations to a single half-period (the motion between four stops).

Thus, the integration interval (from 0 to 2π) of the right-hand terms of the above equations is
divided into four sub-intervals. A similar procedure has been successfully adopted in Badraghan
(1994), Gałkowski (1999), Giergiel (1990), Kosior (2005), Osiński (1998) or Skup (2010). The
influence of elasto-frictional parameters k1 and k2, corresponding to tan ξ1 and tan ξ2, on the
investigated system is depicted in Fig. 3

k1 = tan ξ1 =
P1
umax

k2 = tan ξ2 =
P2
umax

umax = A (2.17)

where

P1 = α1P P2 = α2P α1 = 1 (2.18)

Basing on the work by Skup (2010), the maximal axial displacement umax and dimensionless
parameter α2 are given by

u1(x = H) = umax = α1P (m17 +m18) α2 = α1
m17 +m18
m19 +m18

(2.19)

where

m17 =
η3 tan β(λ9R

λ10−λ9rλ9 − λ10rλ10)

πr(rλ10 −Rλ10−λ9rλ9)
m18 =

η4
πr

m19 =
η9 tan β(λ11R

λ12−λ11rλ11 − λ12rλ12)

πr(rλ12 −Rλ12−λ11rλ11)
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and

η1 =
χ

E2

[

1− ν2 +
r2z0
r2
(1 + ν2)

]

+
1− ν1
E1

η2 =
cosβ(1 − µ tan β)

2(tan β + µ) tan β

η3 = η1η2 η4 =
ν1
E1
tan β

χ =
1

(rz0
r

)2

− 1
η8 =

cosβ(1 + µ tan β)

2 tan β(tan β − µ)

η9 = η1η8 ∆41 = B
2
4 + 4C12 > 0

λ9,10 =
B4 ∓

√
∆41
2

B4 = 1 +
η6

η3 tan β

C12 =
η7

η3 tan2 β
η6 = η4 − 2η3 tan β − η5

η7 = η4 tan β +
1

E1
η5 =

ν1 cos β(1− µ tan β)

E1(tanβ + µ)

∆43 = B
2
5 + 4C15 > 0 λ11,12 =

B5 ∓
√
∆43
2

B5 = 1 +
η10
η9 tan β

C15 =
η11

η9 tan2 β

η10 = η4 − 2η9 tan β − c1 η11 = η4 tan β +
1

E1

c1 =
ν1 cos β(1 + µ tan β)

E1(tan β − µ)

I Stage of motion from 0 to π/2, P (u, sgn u̇) = k2u, u̇ < 0, u > 0.
II Stage of motion from π/2 to π, P (u, sgn u̇) = k1u, u̇ < 0, u < 0.
III Stage of motion from π to 3π/2, P (u, sgn u̇) = k2u, u̇ > 0, u < 0.
IV Stage of motion from 3π/2 to 2π, P (u, sgn u̇) = k1u, u̇ > 0, u > 0.
Therefore, substituting formulas (2.3), (2.8) and (2.18) into equations (2.16) and integrating,

gives

2π
∫

0

P (u, sgn u̇) sin z dz =

π

2
∫

0

k1u sin z dz +

π
∫

π

2

k2u sin z dz +

3π

2
∫

π

k1u sin z dz

+

2π
∫

3π

2

k2u sin z dz = A(k2 − k1)

2π
∫

0

P (u, sgn u̇) cos z dz =

π

2
∫

0

k1u cos z dz +

π
∫

π

2

k2u cos z dz +

3π

2
∫

π

k1u cos z dz

+

2π
∫

3π

2

k2u cos z dz =
πA(k2 + k1)

2

(2.20)

Finally, form (2.20), the expression for (2.16) is given by

sinφ =
1

P0π
A(k2 − k1) mω2 +

P0
A
cosφ =

k1 + k2
2

(2.21)

To introduce a dimensionless vibration amplitude to the system of equations (2.21), the follo-
wing notation was assumed: A – vibration amplitude, a – dimensionless vibration amplitude,
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xst – static axial displacement in form of the relative displacement of the friction joint elements,
ki – elasticity of the frictional parameters (i = 1, 2), ∆k – dimensionless damping parameter,
ω0 – frequency of free vibrations of the system, γ – dimensionless frequency, kav – average ela-
sticity of the system, k – dimensionless elasticity parameter of the frictional joint. Additionally

kav =
k1 + k2
2

∆k =
k1 − k2
kr

=
2(1 − k)

1 + k
k =
k2
k1
=
P2
P1

ω0 =

√

kav
m

γ =
ω

ω0
kst =

P0
kav

a =
A

kst

ω2
ω1
=

√

k2
k1
=
√
k

Therefore

sinφ = −
a∆k

π
γ2 +

1

a
cosφ = 1 (2.22)

With the help of the above equations (2.22), the relation between the tangent of the phase
displacement angle φ and the dimensionless amplitude a can be calculated as

tan φ = −
∆k

π(1− γ2)
a =

1
√

(1− γ2)2 +
(

∆k
π

)2
(2.23)

3. Numerical results

Numerical results for vibrations of the considered system have been obtained using the Mathe-
matica environment. Typical results are depicted in Figs. 4-7. The basic geometrical parameters
and material properties of the investigated frictional model are presented in Table 1.

Table 1. Parameters of the investigated model

No. Parameter [unit] Value

1 Loading force P1 = P [kN] 100

2 Dimensionless parameter α1 1

3 Dimensionless parameter α2 for β = 12
◦ 0.200

4 Dimensionless parameter α2 for β = 14
◦ 0.272

5 Dimensionless parameter α2 for β = 16
◦ 0.298

6 Dimensionless parameter α2 for β = 18
◦ 0.341

7 Poisson’s ratio ν 0.29

8 Young’s modulus E [N/mm2] 2.1 · 105

9 Friction coefficient µ 0.15

10 Coning angle of tilt β [◦] 12, 14, 16, 18

11 External radius of sleeve rz [mm] 42

12 Internal radius of shaft rw [mm] 28.03

14 Surface of cross-section field model [mm2] 2063.3

15 Reduced mass m [kg] 2.661
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Fig. 4. Typical amplitude-frequency characteristics for forced vibrations of the investigated system and
various angles β: (a) 12◦, (b) 14◦, (c) 16◦, (d) 18◦

Fig. 5. Global dimensionless amplitude-frequency characteristics for forced vibrations of the investigated
system and various values of angle β: 1 – 12◦, 2 – 14◦, 3 – 16◦, 4 – 18◦

Fig. 6. Relationship between the dimensionless damping parameter ∆k and the angle β [◦]
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Fig. 7. Graphs of the phase displacement angle φ of forced vibration of the friction joint as function of
the dimensionless frequency γ for various values of the angle β and dimensionless elasticity k;
1 – β = 12◦, k = 0.028, 2 – β = 14◦, k = 0.099, 3 – β = 16◦, k = 0.159, 4 – β = 18◦, k = 0.209

The numerical results for basic parameters of forced vibrations are presented in Table 2.

Table 2. Numerical data

Angle
β [◦]

Force
P1 [N]

Force
P2 [N]

Displacement
umax [mm]

Dimensionless Dimensionless
damping elasticity

parameter ∆k k

12 100000 20053.2 0.1055 1.3318 0.2005

14 100000 27182.1 0. 0900 1.1447 0.2718

16 100000 29766.6 0.0851 1.0825 0.2977

18 100000 34101.2 0.0755 0.9828 0.3410

4. Concluding remarks

Basing on detailed analysis of the acquired numerical data it was found that all resonance cha-
racteristics of dimensionless amplitudes start at 0.33-0.42 range (accordingly to ∆k parameter)
and tend asymptotically to zero in the post resonance range. In this range, the characteristics
exhibit a strong dynamical decrease in the amplitude values. Moreover, the increase in the re-
sonance amplitudes and the rightwards shift of the resonance can be observed for higher cone
angles (Figs. 4 and 5) while the other parameters remain unchanged.

Nonlinearities of investigated systems are observable for all considered amplitudes and vi-
bration frequencies. For the forced frequency ω, which is close to the natural frequency of
vibrations, non-dimensional amplitudes a assume higher values. Basing on the data depicted in
Figs. 4 and 5), the most dangerous range of frequencies for the investigated frictional joint is
0.85 < γ < 1.15.

Values of the dimensionless damping parameter ∆k and dimensionless rigidity k (Table 2)
strongly depend on the angle β. These characteristics reveal a nonlinear character (Fig. 6). The
parameter ∆k can be treated as a measure of damping of vibrations of the mechanical system.
For higher values of the parameter ∆k, the system reveal higher dissipative properties (higher
values of the resonance amplitude damping). This phenomenon is observable in Figs. 4 and 5.
For lower values of the angle β and parameter k, a decrease in the resonance amplitude values
is observed (Fig. 5). Such a phenomenon results from the increasing surface of the micro-sliding
zone of the cooperating elastic elements. The selection of the angle β should also take into
account the undesirable jamming phenomenon (where tanβ > µ).

Relationships of the phase shift φ and dimensionless frequency γ for various angles β are
depicted in Fig. 7. For higher angles β (lover sliding zone of the cooperating elements) the
angle φ nearby γ = 1 rapidly changes. For lower γ, φ angle remains small, thus vibrations
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are almost in phase with the excitation. For higher γ, an increase in φ is observable, tending
to 180◦ regardless of the damping intensity. The phase displacement angle reflects the magnitude
of damping in the system. Higher values of the angle φ results in an increase in the damping
properties of the system.
The best effect of damping of vibrations is observable for a selected value of the friction force.

Then the micro-sliding zone of the cooperating parts of the conical joint is greater. Concluding,
the damping of vibrations in the investigated system depends on the following parameters: forced
amplitude, the rigidity of the shaft and sleeve in the joint, unit pressure and friction coefficient.
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